CHM 102 Exam III

4

ı

5

1. In aqueous solution, dithionite reacts with bismuth (III) to produce sulfite and bismuth metal:

$$S_2O_4^{2-}(aq) + Bi^{3+}(aq) \rightarrow SO_3^{2-}(aq) + Bi(s)$$

a) Assign oxidation states to all atoms in this reaction.

$$5_{2}0_{4}^{1} + 6_{3}^{3} \rightarrow 50_{3}^{3} + 6_{3}^{3}$$

b) Which reagent reacts as an oxidizing agent? Which reagent reacts as a reducing agent?

c) Using the method of half-reactions, balance this chemical equation.

$$\frac{3r(2H_{2}0+5_{2}0H^{2}\rightarrow250_{3}^{2}+4H^{\dagger}+2h^{-})}{2x(3e^{-}+8:^{2+}\rightarrow6:)}$$

$$\frac{7r(2H_{2}0+5_{2}0H^{2}\rightarrow6:)}{6H_{2}0+35_{2}0H^{2}+4h^{-}+4h^{$$

d) What volume of $0.10 \text{ M} \text{ S}_2\text{O}_4^{2-}$ (aq) is required to make 50.0 g of Bi(s)?

- 2. Nobelium-259 was first discovered in 1965, and is most conveniently synthesized by the nuclear fusion of neon-22 nuclei with uranium-238.
- a) Write a balanced nuclear equation for the formation of ²⁵⁹No. What other particle is produced?

b) Nobelium-259 decays to fermium-255 with a half-life of 58 minutes. Write a balanced nuclear equation for this process. What form of radioactive decay is this?

5

c) How long does it take for a 99% of a sample of 1.0×10⁻⁶ g of ²⁵⁹No to decay?

$$\frac{N}{N_0} = \frac{1}{100}$$

$$\int_{1}^{N} \left(\frac{N}{N_0}\right) = -\left(\ln 2\right) \frac{t}{t_{1/2}}$$

$$\int_{1}^{N} \left(\frac{1}{100}\right) = -\left(\ln 2\right) \frac{t}{58}$$

$$t = \frac{58 \ln \left(\frac{1}{100}\right)}{-\ln 2} = \frac{385 \text{ minves}}{385 \text{ minves}}$$

3. One of the steps in the industrial synthesis of nitric acid is the reaction of ammonia with oxygen to form nitric oxide and water:

$$NH_3(g) + O_2(g) \rightarrow NO(g) + H_2O(g)$$

a) Assign oxidation states to all atoms in this reaction.

4

$$NH_3 + 0_2 \rightarrow NO + H_2^0$$

b) Which atom is getting oxidized? Which atom is getting reduced?

c) Using the method of half-reactions, balance this chemical equation.

$$4 \times (H_{2}^{0} + NH_{3} \rightarrow N0 + 5H^{+} + 5e^{-})$$

$$5 \times (H_{e}^{-} + 4H^{+} + 02 \rightarrow 2H_{2}^{0})$$

$$4 \times (H_{2}^{0} + 4H^{+} + 02 \rightarrow 2H_{2}^{0})$$

$$5 \times (H_{e}^{-} + 4H^{+} + 02 \rightarrow 2H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 5e^{-})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{+} + 20e^{-} + 20H^{+} + 20e^{-} + 40H_{2}^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 4H^{0} + 20e^{-} + 40H^{0} + 20e^{-} + 40H^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 4H^{0} + 20e^{-} + 40H^{0} + 20e^{-} + 40H^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 4H^{0} + 20e^{-} + 40H^{0} + 20e^{-} + 40H^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 20e^{-} + 40H^{0} + 20e^{-} + 40H^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 4H^{0} + 4H^{0} + 40H^{0} + 40H^{0} + 40H^{0})$$

$$6 \times (H_{2}^{0} + 4H^{0} + 4H$$

d) A standard DOT 105J series rail car full of ammonia contains 33,500 gallons (1.27×10^5 L). How many moles of oxygen are required to completely react with this quantity of ammonia? The density of liquid ammonia is 0.6818 g / mL.

4. Explain the following phenomena:

5

5

5

a) Permanganate (MnO₄) is a common strong oxidizing agent, but manganese in permanganate is never oxidized.

WHEN MOR REALTS AS AN OXIOIZER, IT CAUSES
OTHER REALENS TO DECOME OXIOIZED, WHILE IT
CET MOVIED.

b) A source of gamma radiation is more dangerous than a source of alpha radiation, despite the fact that an alpha particle can cause more molecular damage than a gamma ray.

TIMY GAMMA RAMS CAN PENFTMAN: MUCH FAMTHER INTO MATTER THAN MASSIVE &- PARTICLES.

c) The molar mass of a natural sample of bromine is about 80 g/mol, but bromine has no naturally occurring isotope of mass number 80.

THE MOLAN MADS IS A LIETCHTED AVOILABLE OF ALL NATURALLY OCCUPACING ISOTOPE). IN THIS CASE ONOMING IS NATURALLY ADON'T HALF 79B- AND HALF & Br.

- 5. For this problem, refer to the activity series at the right:
- a) Are the following reactions spontaneous?

i)
$$\operatorname{Sn} + \operatorname{Cu}^{2+} \to \operatorname{Sn}^{2+} + \operatorname{Cu}$$

イモ?

3 ii)
$$Li^+ + Ag \rightarrow Li + Ag^+$$

4

10

Cyr

iii)
$$Ni^{2+} + Fe \rightarrow Ni + Fe^{2+}$$

b) Suppose you were choosing materials for a chemical plant. Would you pick copper or steel pipe for a process that runs under acidic conditions? Explain.

The Activity Series

Li(s)
$$\rightarrow$$
 Li⁺(aq) + e⁻
K(s) \rightarrow K⁺(aq) + e⁻
Ca(s) \rightarrow Ca²⁺(aq) + 2 e⁻
Na(s) \rightarrow Na⁺(aq) + e⁻
Mg(s) \rightarrow Mg²⁺(aq) + 2 e⁻
Al(s) \rightarrow Al³⁺(aq) + 3 e⁻
Mn(s) \rightarrow Mn²⁺(aq) + 2 e⁻
Zn(s) \rightarrow Zn²⁺(aq) + 2 e⁻
Cr(s) \rightarrow Cr³⁺(aq) + 2 e⁻
Ni(s) \rightarrow Ni²⁺(aq) + 2 e⁻
Ni(s) \rightarrow Ni²⁺(aq) + 2 e⁻
Pb(s) \rightarrow Pb²⁺(aq) + 2 e⁻
Pb(s) \rightarrow Pb²⁺(aq) + 2 e⁻
Cu(s) \rightarrow Cu²⁺(aq) + 2 e⁻
Ag(s) \rightarrow Ag⁺(aq) + e⁻
Au(s) \rightarrow Au³⁺(aq) + 3 e⁻

c) Write a balanced chemical equation for the dissolution of zinc in acid.

$$\frac{7}{4} - \frac{7}{2^{n}} + \frac{7}{2^{n}} + \frac{7}{4^{2}}$$

d) How many moles of HCl are required to dissolve 100.0 g of Zn?

For the remaining questions, choose the letter that corresponds to the best answer.

- 6. Which of the following are oxidation-reduction reactions?
- $\angle PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$
- II. $\checkmark \text{Cu}(s) + 2 \text{AgNO}_3(aq) \rightarrow \text{Cu}(\text{NO}_3)_2(aq) + 2 \text{Ag}(s)$
- III. \star CO₂(g) + 2 LiOH(s) \rightarrow Li₂CO₃(s) + H₂O(l)
- IV. \checkmark 2 HCl(aq) + 2 Na₂CrO₄(aq) \rightarrow Na₂Cr₂O₇(aq) + 2 NaCl(aq) + H₂O(l)
- V. $\checkmark \text{CH}_4(g) + 2 \text{O}_2(g) \rightarrow \text{CO}_2(g) + 2 \text{H}_2\text{O}(g)$
 - (A) 3 I and II

5

5

5

- (B) III and IV
- I, II, and V
- (D) I I, III, and IV
- (E) I, IV, and V
- 7. How many neutrons, protons, and electrons are in an atom of platinum-195?
 - (A) 78 neutrons, 78 protons, 195 electrons
 - 78 neutrons, 78 protons, 117 electrons (B)
 - 117 neutrons, 78 protons, 195 electrons
 - (C)
 - 117 neutrons, 78 protons, 78 electrons
 - 195 neutrons, 78 protons, 78 electrons (E)
- 8. A statine-217 is unstable and undergoes the following series of decays: α , β , α , β . What nucleus is formed at the end of this decay series?
 - $^{209}_{79}$ Au (A)
 - $^{207}_{81}T1$
 - $^{209}_{81}Tl$ (C)
 - $^{207}_{82} \, Pb$ (D)
 - ²⁰⁹₈₃Bi
- 217 At 2 He + 213 o: - 12 + 213 f. - 209 fs + 214 6

195 Pt

- 9. Tritium has a half-life of 12.3 years. How long does it take for a 48 g sample of tritium to decay to 6.0 g?
 - (A) 12 years
 - (B) 21 years
 - 25 years
 - 37 years
 - 49 years
- 48 24 12 -6

 - 36, = 12.3 *3. 36.97

10. The following observations are made in the laboratory:

$$Cd(s) + Ni^{2+}(aq) \rightarrow Cd^{2+}(aq) + Ni(s)$$
 spontaneous $Cd(s) + Fe^{2+}(aq) \rightarrow Cd^{2+}(aq) + Fe(s)$ not spontaneous $Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$ spontaneous

$$Cd(s) + Fe^{2+}(aq) \rightarrow Cd^{2+}(aq) + Fe(s)$$
 not spontaneous

$$Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$$
 spontaneous

Which of the following is true about the relative reactivities of cadmium, nickel, and iron metal?

- (A) Cd(s) > Ni(s) > Fe(s)
- Ni(s) > Fe(s) > Cd(s)(B)
- Ni(s) > Cd(s) > Fe(s)(C)
- Fe(s) > Cd(s) > Ni(s)
- Fe(s) > Ni(s) > Cd(s)
- 11. Strontium-90 is an unstable nuclide produced in nuclear fallout that is dangerous because it can replace calcium in the bones. It is consumed by the following process:

$${}^{90}_{38}{\rm Sr} \rightarrow {}^{0}_{-1}{\rm e} + {}^{90}_{39}{\rm Y}$$

What is this process an example of?

fission (A)

5

5

5

- positron emission (B)
- α decay
- β decay
- γ decay
- 12. Which of the following statements are *false* about oxidation-reduction reactions?
- Oxidation is a loss of electrons.
- II. ✓ An oxidizing agent loses electrons.
- III.

 ✓ The oxidation state of an oxidizing agent will increase.
- IV. A reducing agent gets reduced.
- V. An atom undergoing reduction will have a decrease in oxidation state.
 - (A) I and V
 - (B) 3 II and IV
 - I, III, and V
 - II, III, and IV
 - I, IV, and V

- 13. The nuclide $^{232}_{90}\text{Th}$ is radioactive. When one of these atoms decays, a series of α and β emissions occur, taking the atom through many transformation to end up as an atom of $^{208}_{82} \, \text{Pb}$. How many α particles are emitted in converting $^{232}_{90}$ Th to $^{208}_{82}$ Pb?
 - 6 8

- 732 208 24 mess units = 6 2 lk

- 2 (C)
- (D) 214
- (E) 4

5

5

5

14. In the following reaction, what is oxidized and what is reduced?

$$3 \cos O_4(aq) + 5 \sin (aq) + \sin O_3(aq) + 3 \cos O(O_1) + 3 \cos O(O_2) + 3 \cos O(O_3) + 3 \cos O(O_4) + 3 \cos O(O_2) + 3 \cos O(O_3) + 3 \cos O(O_4) + 3 \cos$$

- Co²⁺ is oxidized and the I in IO₃ is reduced. (A)
- I is oxidized and the I in IO₃ is reduced.
- I in IO₃ is oxidized and H₂O is reduced.
- I is oxidized and Co²⁺ is reduced. (D)
- None of these are correct. (E)
- 15. An artifact contains 12.5% of the amount of ¹⁴C present in living things. The half-life of ¹⁴C is 5,730 years. How old is the artifact?
 - (A) 1,910 years
- (B) 2,865 years

- 11,460 years
- 361, = 3 (57)0): 17190
- 17,190 years
- 22,920 years

Equations for radioactive decay

$$N = N_0 e^{-(\ln 2)\frac{t}{t_{1/2}}}$$

$$\ln\left(\frac{N}{N_0}\right) = -(\ln 2)\frac{t}{t_{1/2}}$$