CHM 106

Exam II

5

5

5

- 1. Recipes for buffer solutions of known pH can be found in many reference handbooks. One such recipe starts with two stock solutions. Solution A is made by dissolving 16.41 g of solid sodium acetate (NaC₂H₃O₂) in 1.00 L of water. Solution B is made by diluting 11.47 mL of glacial acetic acid (HC₂H₃O₂, 17.45 \underline{M}) to 1.00 L. The buffer is then prepared by mixing 70.5 mL of solution A with 29.5 mL of solution B. For acetic acid, $K_a = 1.75 \times 10^{-5}$.
- a) What is the concentration of $C_2H_3O_2^-(aq)$ in solution A? Mu $(N_1 c_2|_{2^{-1}})^{\frac{1}{2}}$ O.200 M $C_2|_{2^{-1}})^{\frac{1}{2}}$ O.200 M $C_2|_{2^{-1}}$ O.200 M $C_2|_{2^{-1}}$ O.200 M $C_2|_{2^{-1}}$
- b) What is the concentration of HC₂H₃O₂(aq) in solution B?

c) What is the pH of the resulting buffer?

- 2. Piperidine (C₅H₁₁N) is a weak base that can accept one hydrogen ion. Suppose a 10.00 mL aliquot of piperidine solution of unknown concentration is titrated to the equivalence point with 37.23 mL of 0.1015 M HCl.
- a) Write a balanced chemical equation for this reaction. Under your equation, specify which species reacts as an acid, which species reacts as a base, which species is the conjugate acid, and which species is the conjugate base.

b) What is the concentration of the piperidine solution?

3

3

6

c) The pH of the original piperidine solution (before titration) is 12.338. What is the value of K_b

d) What is the percent dissociation of piperidine in the original solution?

- 3. Lead (II) iodide is slightly soluble in water with $K_{sp} = 7.1 \times 10^{-9}$.
- a) What is the molar solubility of lead (II) iodide?

5

5

5

a) What is the molar solubility of lead (II) iodide?

Pb
$$I_2(s) = pb^{2s}(s_1) + 2I(s_2)$$

CHANGE:

 $-k$
 $+k$
 $+k$

b) What is the molar solubility of lead (II) iodide in 0.10 M KI?

c) Suppose that you slowly add KI(s) to a solution of 0.10 M Pb(NO₃)₂. At what concentration of iodide does lead (II) iodide precipitate?

4. Explain the following phenomena.

5

5

a) The compound BF_3 reacts with bases and gives an aqueous solution with a very low pH despite the fact that there are no hydrogen atoms in its structure.

b) In the titration of a weak acid with strong base, the pH of the titration flask does not change much for a good portion of the titration before the equivalence point is reached.

c) $BaCO_3$, $BaSO_3$, and $BaSO_4$ are all only slightly soluble in water, but the first two dissolve in HCl solution whereas $BaSO_4$ does not.

THE CONJUGATE HEPRELIAMY BASIC SOUBILITY KOULLIBRIUM 141 A Snow Aco, so ٥F Syst GOUS ULANG TH 15 APPRILIMBLY ABIC AND THE SOLUDICIM OF THE 15 independent of pH. Buson

- 5. Pivalic acid ($HC_5H_9O_2$) is a weak monoprotic acid with $K_a = 9.31 \times 10^{-6}$. Suppose that a 20.00 mL portion of 0.100 <u>M</u> pivalic acid is titrated with standard 0.100 <u>M</u> sodium hydroxide.
- a) What is the pH of the pivalic acid solution before any NaOH is added?

$$|A \subset S | A \subset$$

b) What is the pH of the pivalic acid solution after 10.00 mL of NaOH is added?

Determ:
$$0.001$$

Aprox: 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.001
 0.00

c) What is the pH at the equivalence point?

$$H(s, H_{2}) + h_{3} = H(s, H_{3}) + h_{4} = H(s, H_{3}) + h_{5} = \frac{1}{100} + \frac{1}{100}$$

d) What is the pH after 40.00 mL of NaOH is added?

e) Sketch the titration curve for this titration. In your sketch, identify the following points: (1) pH depends only on a weak acid, (2) pH depends only on the conjugate base, (3) pH depends only on the strong base hydroxide, (4) the equivalence point, (5) pH = pK_a , (6) the buffer region.

For the remaining questions, circle the letter that corresponds to the best answer.

6. Which acid below gives the highest pH in a 0.1 M solution?

A HA₁ with $K_a = 2 \times 10^{-5}$

3

5

5

- (B) HA_2 with $K_a = 2 \times 10^{-4}$
- (C) HA_3 with $K_a = 1.4 \times 10^{-3}$
- (D) HA_4 with $K_a = 1.4 \times 10^{-2}$
- (E) HA_5 with $K_a = 1 \times 10^6$

7. A buffer of pH = 3.00 is desired. If the following reagents are available, which pair of reagents will make the buffer of highest capacity?

- (A) $HClO_3$ (pK_a = -2.70) and NaClO₃
- (B) HNO_2 (pK_a = 3.14) and NaN₃
- (C) K_2HPO_4 (pK_a = 11.90) and K_3PO_4
- $HF (pK_a = 3.20) \text{ and } KF$
- (E) NaH_2PO_4 (pK_a = 6.68) and Na_2HPO_4

8. Hydrofluoric acid has a $K_a = 6.31 \times 10^{-4}$. Which of the following factors would increase the pH of a solution of 1.0 M HF?

- I. ★ Add some HNO₃
- II. Add some KOH
- III. Add some KF
- IV. ✓ Add some H₂O

5

5

5

- V. ★ Add some KNO₃
 - (A) I and IV
 - 3 (B) II and III
 - (C) I and V
 - II, III, and IV
 - (E) I, IV, and V

For questions 9-11, refer to the following table of acid and base dissociation constants and circle the letter that best describes the acid/base properties of each of the following salts.

Substance	Ka	K_b
HCN	6.17×10 ⁻¹⁰	1.62+1,5 (0~)
$HC_2H_3O_3$	1.78×10^{-5}	
C_5H_5N	-10()	1.49×10 ⁻⁹
NH ₃	5,62310 (mH2)	1.78×10^{-5}

- 9. NH₄CN K, 7 K.
 - (A) produces and acidic solution when dissolved in water
 - produces a basic solution when dissolved in water
 - (C) produces a neutral solution when dissolved in water
- 10. C₅H₅NHNO₃
 - A produces and acidic solution when dissolved in water
 - (B) produces a basic solution when dissolved in water
 - (C) produces a neutral solution when dissolved in water
- 11. KC₂H₃O₂
 - (A) produces and acidic solution when dissolved in water
 - produces a basic solution when dissolved in water
 - (C) produces a neutral solution when dissolved in water

- 12. Which of the following statements are true?
- I. A weak acid has a strong conjugate base.
- II. Acid strength is inversely proportional to the affinity of the conjugate base for hydrogen ions.
- III. \checkmark A strong acid has p $K_a < 0$.
- IV. * As base strength increases, the conjugate acid is more willing to donate hydrogen ions.
 - (A) I and III
 - (B) I and II
 - (C) II and III
 - (D) I and IV

5

5

5

- (E) I, II, and III
- 13. If bromocresol purple (pH color range = 5.2 6.8) is used as an indicator when titrating a weak acid with a strong base, the volume of base needed to reach the equivalence point will be:

- (B) slightly overestimated
- underestimated
- (D) accurate
- (E) cannot be determined by the information given

14. $Cu(OH)_2$ is a sparingly soluble salt with $K_{sp} = 2.2 \times 10^{-20}$. Which of the following factors will increase K_{sp} for $Cu(OH)_2$?

- I. \rightarrow Add some Cu(NO₃)₂
- II. ★ Add some Cu(OH)₂
- III. * Increase pH
- IV. ► Decrease pH
 - (A) II only
 - (B) IV only
 - (C) I and III
 - (D) II and IV
 - none of the above

- I. Solution B has twice as many OH ions as solution A.
- II. Solution B has one hundred times as many OH ions as solution A.
- III. * Solution A has one hundred times as many OH ions as solution B.
- IV. \checkmark Solution A has one hundred times as many H_3O^+ ions as solution B.
- V. \star There are no H_3O^+ ions in either solution because they are both basic.
 - (A) I only
 - (B) III only
 - (C) II and III
 - (D) II and IV
 - (E) III and IV

Equations and Constants

$$PV = nRT$$

5

$$\ln [A] = -kt + \ln [A]_0$$

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

$$[A] = -kt + [A]_0$$

$$K_p = K(RT)^{\Delta n}$$

$$pH = -\log [H^{+}]$$

$$pOH = -\log [OH^{-}]$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

$$\ln k = -\frac{E_a}{R} \frac{1}{T} + \ln A$$

$$\ln \frac{k_1}{k_2} = -\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$K_w = 1.00 \times 10^{-14} = [H^+][OH^-]$$

$$pH + pOH = 14.000$$

$$K_a \cdot K_b = K_w$$